Physical pharmacy I 2nd stage Ionic equilibria

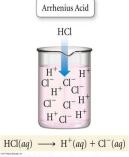
2025-2026

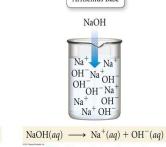
Outlines

- Objectives
- Theories
- Acid-base equilibria
- Calculation of pH, acidity constants
- The effect of ionic strength.

Objectives

- Concept of Sörensen's pH scale.
- Understanding different terminology such as Ampholytes, Aprotic,
- Ionization of Polyprotic electrolytes.
- pKa and pH calculation of aqueous solutions with different composition

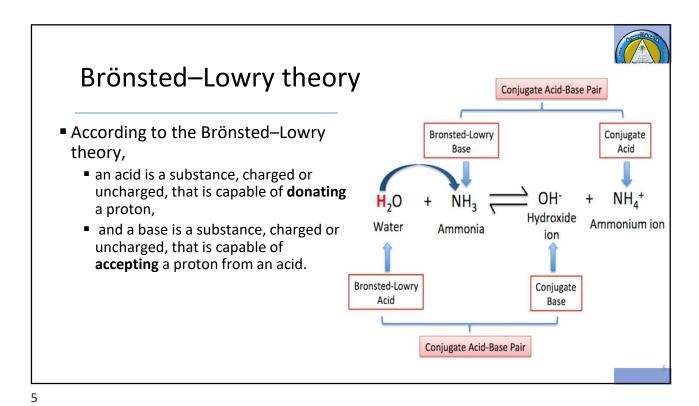

3

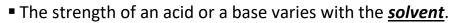

Theories

Arrhenius Theory

- Arrhenius defined
 - an acid as a substance that liberates hydrogen ions
 - and a <u>base</u> as a substance that supplies hydroxyl ions on dissociation in aqueous media.

Arrhenius Theory





NaOH dissociates in water, producing Na+ and OH- ions

HCI ionizes in water, producing H⁺ and Cl⁻ ions

- HCl is a **strong** acid but it is a **weak** acid in glacial acetic acid.
- Acetic acid, which is a **weak** acid, is a **strong** acid in liquid ammonia.
- Consequently, the strength of an acid depends:
 - 1. not only on its ability to give up a proton
 - but also on the ability of the solvent to accept the proton from the acid. This is called the basic strength of the solvent.

In the Brönsted-Lowry classification, acids and bases may be

- ■anions such as HSO4- and CH3COO-,
- •cations such as NH4+ and H3O+,
- ■or neutral molecules such as HCl and NH3.
- Water can act as either an acid or a base and thus is **amphiprotic**.

Solvent classification

 \checkmark is one that is capable of **accepting** protons from the solute. Eg. acetone, ether, and liquid ammonia.

✓ is a **proton-donating** compound and is represented by acids such as formic acid, acetic acid, sulfuric acid, liquid HCl, and liquid HF.

3. Amphiprotic solvents

✓ act as both proton acceptors and proton donors, and this class includes water and alcohols.

4. Aprotic solvents,

✓ such as the hydrocarbons, neither accept nor donate protons, and, being neutral in this sense, they are useful for studying the reactions of acids and bases free of solvent effects.

Proteolytic reactions or protolysis.

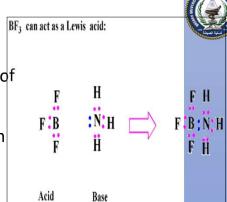
Acid-base reactions occur when an acid reacts with a base to form a new acid and a new base, called conjugates. So it is the reaction that involve a transfer of a proton, and are known as protolytic reactions or protolysis. Proton transfer reactions are also known as protonation—deprotonation reactions.

$$HCl + H_2O \rightarrow H_3O^+ + Cl^-$$

 $Acid_1 \quad Base_2 \quad Acid_2 \quad Base_1$

۵

Several examples illustrate these types of reactions, as shown in Table 7-1.

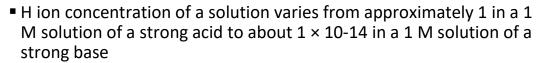

TABLE 7-1. Examples of Acid-Base Reactions

	$Acid_1$		Base ₂		Acid ₂		Base ₁
Neutralization Neutralization Neutralization Hydrolysis Hydrolysis Displacement	NH ₄ + H ₃ O+ HCI H ₂ O NH ₄ + HCI	+++++	OH ⁻ OH ⁻ NH ₃ CH ₃ COO ⁻ H ₂ O CH ₃ COO ⁻	= = = = =	H ₂ O H ₂ O NH ₄ ⁺ CH ₃ COOH H ₃ O ⁺ CH ₃ COOH	+ + + + + + + +	NH ₃ H ₂ O Cl ⁻ OH ⁻ NH ₃ Cl ⁻

Lewis Electronic Theory.

- According to the Lewis theory, an acid is a molecule or an ion that accepts an electron pair to form a covalent bond.
- A base is a substance that provides the pair of unshared electrons by which the base coordinates with an acid.
- Lewis acid eg boron trifluoride and aluminum chloride,
- Lewis base eg amines, ethers, and carboxylic acid anhydrides, are classified as bases according to the Lewis definition.

11



- The Lewis acid theory is widely used for describing the mechanism of many organic and inorganic reactions.
- It is referred to simply as a form of electron sharing rather than as acid—base reactions.
- It will be important in solubility and complexation.
- The Brønsted-Lowry nomenclature is particularly useful for describing ionic equilibria and is used extensively in this chapter

Sörensen's pH

- The pH of a solution can be considered in terms of a numeric scale having values from 0 to 14, which expresses in a quantitative way the degree of acidity (7 to 0) and alkalinity (7-14).
- The value 7 at which the hydrogen and hydroxyl ion concentrations are about equal at room temperature is referred to as the neutral point, or neutrality. The neutral pH at 0°C is 7.47, and at 100°C it is 6.15.

13

Ionic Equilibria

• Equilibrium can be deffined as a balance between two opposing forces or actions. TRUE or FALSE?

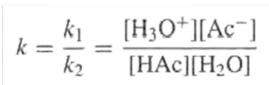
- This statement <u>does not imply</u> cessation of the opposing reactions. Rather, it suggests a dynamic equality between the velocities of the two reactions. Tor F?
- Equilibrium is the condition where the standard free energy difference between the two sides of reaction equation (7-4) is zero $(\Delta G^{\circ} = 0)$. T or F?

Ionic Equilibria

The arrows pointing in the forward and reverse directions indicate that reactions are proceeding to the right and left simultaneously

$$HAc + H_2O \rightleftharpoons H_3O^+ + Ac^-$$

 $Acid_1 \quad Base_2 \quad Acid_2 \quad Base_1$

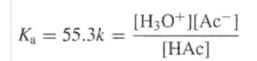

(7-4)

Rate of forward $= k_1 \times [HAc]^1 \times [H_2O]^1$ Rate of backward $= k_2 \times [H_3O^+]^1 \times [Ac^-]^1$

At equilibrium

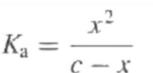
$$k_1 \times [\text{HAc}] \times [\text{H}_2\text{O}] = k_2 \times [\text{H}_3\text{O}^+] \times [\text{Ac}^-]$$

15

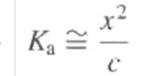


- Mwt of H2O=18.02g/L
- In dilute solutions of acetic acid, water is in suffcient excess to be regarded as constant.
- 1 L of H2O at 25°C weighs 997.07 g,
- Thus, the conc. Of H2O= 997.07/18.02 = 55.3 M).
- [H2O]=55.3 M

$$K_{\rm a} = 55.3k = \frac{[{\rm H}_3{\rm O}^+][{\rm Ac}^-]}{[{\rm HAc}]}$$


Ka: ionization constant or or the dissociation constant of acetic acid

At large conc. Of water (diluent)



$$HAc + H_2O \rightleftharpoons H_3O^+ + Ac^-$$

(c - x) x x

where c is large in comparison with x. The term c - x can be replaced by c without appreciable error, giving the equation

$$x^{2} = K_{a}c$$

$$x = [H_{3}O^{+}] = \sqrt{K_{a}c}$$

17

EXAMPLE 7-1

■ In a liter of a 0.1 M solution, acetic acid was found by conductivity analysis to dissociate into 1.32 × 10–3 moles each of hydronium and acetate ions at 25°C. What is the acidity (or dissociation) constant Ka for acetic acid?

■ H.W

Relationship Between K_a and $K_b^{\beta + H_{20}} \rightleftharpoons BH_{+0}$

A simple relationship exists between the dissociation constant of a weak acid HB and that of its conjugate base B-, or between BH+ and B, when the solvent is **amphiprotic**. This can be obtained by multiplying the following equations:

[H O+1[R-1] [OH-1[HB]]

$$K_{\rm a} = \frac{[{\rm H_3O}^+][{\rm B}^-]}{[{\rm HB}]}$$
 × $K_{\rm b} = \frac{[{\rm OH}^-][{\rm HB}]}{[{\rm B}^-]}$

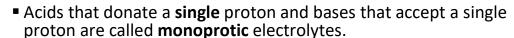
$$K_{a}K_{b} = \frac{[H_{3}O^{+}][B^{-}]}{[HB]} \cdot \frac{[OH^{-}][HB]}{[B^{-}]} = [H_{3}O^{+}][OH^{-}] = K_{w}$$

$$K_a = K_w/K_b$$
 $K_b = K_w/K_a$

 $K_{\rm w}$. known as the *autoprotolysis constant*, or the *ion product* of water

19

EXAMPLE 7-4 Calculate Ka


■ Ammonia has Kb = 1.74 × 10-5 at 25°C. Calculate Ka for its conjugate acid, NH4+. We have

$$K_{\rm a} = \frac{K_{\rm w}}{K_{\rm b}} = \frac{1.00 \times 10^{-14}}{1.74 \times 10^{-5}}$$

= 5.75 × 10⁻¹⁰

Ionization of Polyprotic Electrolytes.

- A polyprotic (polybasic) acid is one that is capable of donating two or more protons, and a polyprotic base is capable of accepting two or more protons.
- A diprotic (dibasic) acid, such as carbonic acid, ionizes in <u>two</u> stages, and a triprotic (tribasic) acid, such as phosphoric acid, ionizes in <u>three</u> stages.
- In any polyprotic electrolyte, the primary protolysis is greatest, and succeeding stages become less complete at any given acid concentration.

21

Ionization of Polyprotic Electrolytes.

$$H_{3}P_{04} + H_{2}O = H_{3}O^{+} + H_{2}PO_{4}^{-}$$

$$\frac{[H_{3}O^{+}][H_{2}PO_{4}^{-}]}{[H_{3}PO_{4}]} = K_{1} = 7.5 \times 10^{-3}$$

$$H_{2}PO_{4}^{-} + H_{2}O = H_{3}O^{+} + HPO_{4}^{2-}$$

$$\frac{[H_{3}O^{+}][HPO_{4}^{2-}]}{[H_{2}PO_{4}^{-}]} = K_{2} = 6.2 \times 10^{-8}$$

$$HPO_{4}^{2-} + H_{2}O = H_{3}O^{+} + PO_{4}^{3-}$$

$$\frac{[H_{3}O^{+}][PO_{4}^{3-}]}{[HPO_{4}^{2-}]} = K_{3} = 2.1 \times 10^{-13}$$

$$PO_4^{3-} + H_2O \rightleftharpoons HPO_4^{2-} + OH^-$$

$$K_{b1} = \frac{[HPO_4^{2-}][OH^-]}{[PO_4^{3-}]} = 4.8 \times 10^{-2}$$

$$HPO_4^{2-} + H_2O \rightleftharpoons H_2PO_4^- + OH^-$$

$$K_{b2} = \frac{[H_2PO_4^-][OH^-]}{[HPO_4^{2-}]} = 1.6 \times 10^{-7}$$

$$H_2PO_4^- + H_2O \rightleftharpoons H_3PO_4 + OH^-$$

$$K_{b3} = \frac{[H_3PO_4][OH^-]}{[H_2PO_4^-]} = 1.3 \times 10^{-12}$$

Ampholytes

Zwitterion

- A species that can function either as an acid or as a base is called an ampholyte and is said to be amphoteric in nature. Amino acids and proteins are ampholytes of particular interest in pharmacy.
- glycine hydrochloride is dissolved in water,:

with H2O

 $^{+}NH_{3}CH_{2}COOH + H_{2}O \rightleftharpoons H_{3}O^{+} + ^{+}NH_{3}CH_{2}COO^{-}$

Amphoteric compound

react as acid with H2O $^+$ NH₃CH₂COO $^-$ + H₂O \rightleftharpoons OH $^-$ + NH₃CH₂COOH $^+$ NH₃CH₂COOH

23

 Ans.: it carries both negative and positive charge; the whole molecule is electrically neutral

Isoelectric point (IEP)

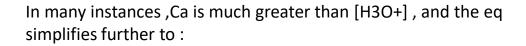
- It is pH at which zwitterion concentration at maximum
- It has been used for determination of protein and amino acids.
- The molecules have ----- solubility at IEP.
- The net charge of a molecule at its IEP is ------.
- Charge of a molecule at pH above its IEP is ----- and below is -----

e.g. pH of milk 6.6 (casein IEP=4.6)

25

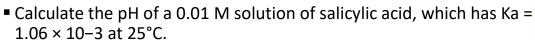
Solutions containing Strong acids

• **Strong acid** concentration of H is equal to initial concentration of acid. Thus, they are considered to ionize fully in aqueous solutions.



Solutions containing Only a Weak Acid

- Conc. of base (Cb) is zero.
- [H3O+] is generally much greater than [OH-]


$$[H_3O^+] = \frac{-K_a + \sqrt{K_a^2 + 4K_aC_a}}{2}$$

$$[\mathrm{H}_3\mathrm{O}^+] = \sqrt{K_\mathrm{a}C_\mathrm{a}}$$

EXAMPLE 7-12 calculate the pH

(a) Using equation (7-102),

$$[H_3O^+] = \sqrt{K_aC_a}$$

$$[H_3O^+] = \sqrt{(1.06 \times 10^{-3}) \times (1.0 \times 10^{-2})}$$

= $3.26 \times 10^{-3} \text{ M} = 0.00326 \text{M}$

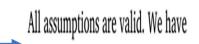
Compare to the conc of acid, The approximation that Ca >> [H3O+] is not valid.

(b) Using equation (7-101), we find

$$[H_3O^+] = \frac{-K_a + \sqrt{K_a^2 + 4K_aC_a}}{2}$$

$$\begin{split} [H_3O^+] &= -\frac{(1.06 \times 10^{-3})}{2} \\ &+ \frac{\sqrt{(1.06 \times 10^{-3})^2 + 4(1.06 \times 10^{-3})(1.0 \times 10^{-2})}}{2} \\ &= 2.77 \times 10^{-3} \text{ M} \\ \text{pH} &= -\log(2.77 \times 10^{-3}) = 2.56 \end{split}$$

EXAMPLE 7-13 Calculate pH


- Calculate the pH of a 1 g/100 mL solution of ephedrine sulfate. The molecular weight of the salt is 428.5 g/mol, and Kb for ephedrine base is 2.3 x 10−5.
- (a) The ephedrine sulfate, (BH+)2SO4, dissociates completely into two BH+ cations and one SO42- anion. Thus, the concentration of the weak acid (ephedrine cation) is twice the concentration, Cs, of the salt added.

$$[H_3O^+] = \sqrt{K_aC_a}$$

$$K_a = K_w/K_b$$

$$C_{\rm a} = 2C_{\rm s} = \frac{2 \times 10 \text{ g/L}}{428.5 \text{ g/mole}} = 4.67 \times 10^{-2} \text{ M}$$

$$K_{\rm a} = \frac{1.00 \times 10^{-14}}{2.3 \times 10^{-5}} = 4.35 \times 10^{-10}$$

(c)
$$[H_3O^+] = \sqrt{(4.35 \times 10^{-10}) \times (4.67 \times 10^{-2})}$$
$$= 4.51 \times 10^{-6} \text{ M}$$

29

Solutions Containing Only a Weak Base

- Conc. Of acid (Ca) is zero,
- and [OH–] is generally much greater than [H3O+].

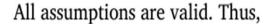
$$[OH^{-}] = \frac{-K_b + \sqrt{-K_b^2 + 4K_bC_b}}{2}$$

and if Cb is much greater than [OH–], which is generally true for solutions of weak bases,

$$[OH^-] = \sqrt{K_b C_b}$$

EXAMPLE 7-14

A CONTRACTOR OF THE PARTY OF TH


Calculate pH

What is the pH of a 0.0033 M solution of cocaine base, which has K_b

=
$$2.6 \times 10^{-6}$$
? We have

$$[OH] = \sqrt{K_b C_b}$$

$$[OH^{-}] = \sqrt{(2.6 \times 10^{-6}) \times (3.3 \times 10^{-3})}$$

= 9.26 × 10⁻⁵ M

$$pOH = -log(9.26 \times 10^{-5}) = 4.03$$

 $pH = 14.00 - 4.03 = 9.97$

Solutions Containing a Single Conjugate Acid—Base Pair

• In a solution composed of a weak acid and a salt (conjugate base) of that acid (e.g., acetic acid and sodium acetate)

- or a weak base and a salt (conjugate acid) of that base (e.g., ephedrine and ephedrine hydrochloride),
- lacktriangle Ca and Cb are generally **much greater** than either [H3O+] or [OH–].

$$[H_3O^+] = \frac{K_aC_a}{C_b}$$

EXAMPLE 7-16

Will control with

Calculate pH

What is the pH of a solution containing acetic acid 0.3 M and sodium acetate 0.05 M? We write

$$[H_3O^+] = \frac{K_aC_a}{C_h}$$
 $[H_3O^+] = \frac{(1.75 \times 10^{-5}) \times (0.3)}{5.0 \times 10^{-2}}$
= $1.05 \times 10^{-4} \text{ M}$

All assumptions are valid. Thus,

$$pH = -\log(1.05 \times 10^{-4}) = 3.98$$

33

EXAMPLE 7-17 Calculate pH

What is the pH of a solution containing ephedrine 0.1 M and ephedrine hydrochloride 0.01 M? Ephedrine has $K_b = 2.3 \times 10^{-5}$; thus, K_a for its conjugate acid is 4.35×10^{-10} .

$$[H_3O^+] = \frac{K_aC_a}{C_h}$$
 $[H_3O^+] = \frac{(4.35 \times 10^{-10}) \times (1.0 \times 10^{-2})}{1.0 \times 10^{-1}}$
= 4.35×10^{-11}

All assumptions are valid. Thus,

$$pH = -\log(4.35 \times 10^{-11}) = 10.36$$

Solutions Containing Two Weak Acids

- In systems containing two weak acids, Cb1 and Cb2 are zero,
- For all systems of practical importance, Ca1 and Ca2 are much greater than K1 and K2, so the equation simplifies to

$$[H_3O^+]^2 + [H_3O^+](K_1 + K_2) - (K_1C_{a1} + K_2C_{a2}) = 0$$
 (7-126)

If $C_{\rm a1} >> [{\rm H_3O^+}]$ and $C_{\rm a2} >> [{\rm H_3O^+}]$, the equation simplifies to

$$[H_3O^+] = \sqrt{K_1C_{a1} + K_2C_{a2}}$$
 (7-127)

35

EXAMPLE 7-21

Calculate pH

What is the pH of a solution containing acetic acid, 0.01 mole/L, and formic acid, 0.001 mole/L? We have $[H_3O^+] = \sqrt{K_1C_{a1} + K_2C_{a2}}$

$$[H_3O^+] = \sqrt{(1.75 \times 10^{-5})(1.0 \times 10^{-2}) + (1.77 \times 10^{-4})(1.0 \times 10^{-3})}$$

$$= 5.93 \times 10^{-4} \text{ M}$$

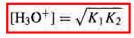
$$pH = -\log(5.93 \times 10^{-4}) = 3.23$$

Solutions Containing a Salt of a Weak Acid and a Weak Base

- The salt of a weak acid and a weak base, such as ammonium acetate, dissociates almost completely in aqueous solution to yield NH4+ and Ac-, the NH4+ is an acid and can be designated as HB1, and the base Ac- can be designated as B2- in equations.
- In most instances, however, Cs >> [H3O+],

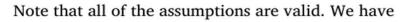
$$[H_3O^+] = \sqrt{K_1K_2}$$

37


EXAMPLE 7-22

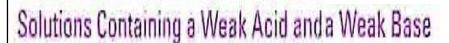
$$NH_4^+ + AC^- \rightleftharpoons HAc + NH_3$$

 $Acid_1 Base_2 Acid_2 Base_1$



Calculate pH

Calculate the pH of a 0.01 M solution of ammonium acetate. The acidity constant for acetic acid is $K_2 = K_a = 1.75 \times 10^{-5}$, and the basicity constant for ammonia is $K_b = 1.74 \times 10^{-5}$. (a) K_1 can be found by dividing K_b for ammonia into K_w :

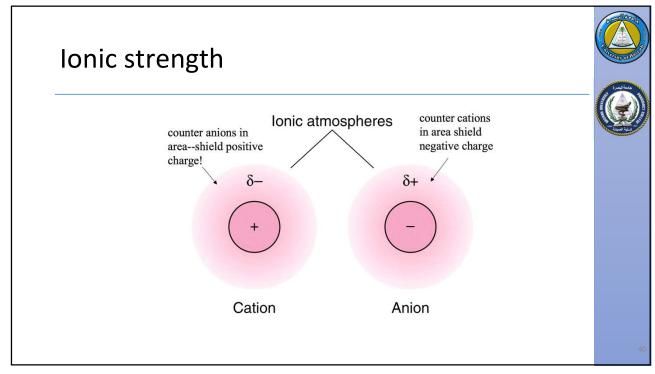

$$\begin{split} K_1 &= \frac{1.00 \times 10^{-14}}{1.74 \times 10^{-5}} = 5.75 \times 10^{-10} \\ \text{[H}_3\text{O}^+\text{]} &= \sqrt{(5.75 \times 10^{-10}) \times (1.75 \times 10^{-5})} \\ &= 1.00 \times 10^{-7} \text{ M} \end{split}$$

$$pH = -\log(1.00 \times 10^{-7}) = 7.00$$

 $HC_6H_5O_7^{2-} + H_2PO_4^- \Rightarrow H_3PO_4 + C_6H_5O_7^{3-}$ Acid2 $[H_3O^+] = \sqrt{K_1K_2}$ Base Base

EXAMPLE 7-24

Calculate pH


What is the pH of a solution containing NaH2PO4 and disodium citrate (disodium hydrogen citrate) Na₂HC₆H₅O₇, both in a concentration of 0.01 M? The third acidity constant for HC₆H₅O₇²⁻ is $4.0\times10^{-7},$ whereas the first acidity constant for phosphoric acid is $7.5\times10^{-3}.$ We have

$$[H_3O^+] = \sqrt{(4.0 \times 10^{-7}) \times (7.5 \times 10^{-3})}$$

= 5.48 × 10⁻⁵ M

All assumptions are valid. We find

$$pH = -\log(5.48 \times 10^{-5}) = 4.26$$

39

Ionic strength

• ionic strength---I or μ ---a measure of the total ion concentration in solution----but ions with more charge are counted more due to stronger electrostatic interactions with other ions (I.e., can influence the increase "ionic atmosphere" greater than singly charged ions)

$$\mu = \frac{1}{2} \sum_{i} c_i z_i^2$$

where c_i is conc. of i^{th} species and z_i is the charge on i^{th} species

 $\frac{\text{What is ionic strength of 0.01 M NaCl solution?}}{\mu = 1/2 \left([\text{Na}^+] z_{\text{Na}}^2 + [\text{Cl}^-] z_{\text{Cl}}^2 \right) = 1/2 \left(0.01 \left(1 \right)^2 + 0.01 (\text{-}1)^2 \right) = 0.01 \text{ M}}$

 $\frac{\text{What is ionic strength of 0.01 M Na}_2 \text{SO}_4 \text{ solution?}}{\mu = 1/2([\text{Na}^+]z_{\text{Na}}^2 + [\text{SO}_4^{-2}]z_{\text{SO4}}^2) = 1/2(0.02 \ (1)^2 + 0.01 \ (-2)^2) = 0.03 \ \text{M}}$

41

Effect of Ionic Strength on Acidity Constants

$$\begin{split} HB + H_2O &\rightleftharpoons H_3O^+ + B \\ K &= \frac{\alpha_{H_3O} + \alpha_B}{\alpha_{HB}} = \frac{[H_3O^+][B]}{[HB]} \cdot \frac{\gamma H_3O^+ \gamma_B}{\gamma_{HB}} \end{split}$$

For monotropic molecule

$$pK' = pK + \frac{0.51(2Z - 1)\sqrt{\mu}}{1 + \sqrt{\mu}}$$

For zwitterion molecule

$$pK'_1 = pK_1 + \frac{0.51\sqrt{\mu}}{1+\sqrt{\mu}} - K_r\mu$$

$$pK_2' = pK_2 - \frac{0.51\sqrt{\mu}}{1 + \sqrt{\mu}} + K_r\mu$$

K_r=Salting in constant=0.32 for amino acid in water

EXAMPLE 7-27

Calculate pH

Calculate the pH of a 0.01 M solution of acetic acid to which enough KCl had been added to give an ionic strength of 0.1 M at 25°C. The p K_a for acetic acid is 4.76.

(a)
$$pK' = pK + \frac{0.51(2Z - 1)\sqrt{\mu}}{1 + \sqrt{\mu}}$$
 $pK'_{a} = 4.76 - \frac{0.51\sqrt{0.10}}{1 + \sqrt{0.10}}$
= 4.76 - 0.12 = 4.64

(b) Taking logarithms of equation (7–99) gives
$$[H_3O^+]=K_a\frac{(C_a-[H_3O^+]+[OH^-])}{(C_b+[H_3O^+]-[OH^-])}$$

$$pH = \frac{1}{2}(pK'_a - \log C_a)$$

in which we now write pK_a as pK'_a :

$$pH = \frac{1}{2}(4.64 + 2.00) = 3.32$$

EXAMPLE 7-28

Calculate pH

Calculate the pH of a 10^{-3} M solution of glycine at an ionic strength of 0.10 at 25° C. The p K_{u} values for glycine are p $K_1 = 2.35$ and p $K_2 = 9.78$.

(a)
$$pK'_1 = 2.35 + \frac{0.51\sqrt{0.10}}{1 + \sqrt{0.10}} - 0.32(0.10)$$
$$= 2.35 + 0.12 - 0.03 = 2.44$$

(b)
$$pK'_2 = 9.78 - \frac{0.51\sqrt{0.10}}{1 + \sqrt{0.10}} + 0.32(0.10)$$
$$= 9.78 - 0.12 + 0.03 = 9.69$$

(c) Taking logarithms of equation (7-118) gives

pH =
$$\frac{1}{2}$$
(p K_1 + p K_2) [H₃O⁺]= $\sqrt{K_1K_2}$
= $\frac{1}{2}$ (2.44 + 9.69) = 6.07

43

45